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Preface

Reliability engineering is a critical area in the

design of any system. Too often a promising and exciting

system which is on the threshold of technology turns into

a nightmare to maintain because it is constantly breaking

down. Improvements are clearly needed in the field of

estimating system reliability. For several years, thesis

students under the direction of Dr. Albert H. Moore have

been doing research in the area of reliability, especially

with regard to Monte Carlo simulation of systems reliabil-

ity. This thesis explores the possibility of simplifying

reliability analysis while still maintaining reasonable

accuracy.

I want to thank Dr. Moore for his patient instruc-

tion over the last months and his continuing interest in

this thesis. I also would like to thank my wife Nancy for

the daily encouragement she has given me for the past

eighteen months.

I would like to thank Phyllis Reynolds for typing

my thesis.
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Abstract

A univariate Monte Carlo technique is developed for

the determination of lower confidence limits of system reli-

ability based on component test data. It is assumed that

the component test data consists of failure times which are

distributed according to a known two-parameter Weibull prob-

ability distribution. These failure times are randomly

generated using the true shape and scale parameters of the

distribution. Maximum-likelihood estimators are found for

the shape and scale parameters and then substituted into

the reliability equation to obtain the maximum-likelihood

estimator for the component reliability. The estimated bias

in this estimator is subtracted to yield an approximately

unbiased estimator of the component reliability. Using the

empirical variance of the reliability estimate and assuming

a normal distribution, a Monte Carlo simulation is run for

four hypothetical systems consisting of as many as five com-

ponents. The simulation is repeated 600 times. Since the

true reliability is known, on each run it can be determined

if the desired confidence intervals contain the true system

reliability. The result is an absolute measure of the

effectiveness of the univariate technique. The entire simu-

lation was run for component test data sample sizes ranging

from ten to one hundred. A second run of 600 was made to

examine the Monte Carlo sampling error for component test

sample sizes of 100.

vi



A UNIVARIATE MONTE CARLO TECHNIQUE TO APPROXIMATE

RELIABILITY CONFIDENCE LIMITS OF SYSTEMS WITH

COMPONENTS CHARACTERIZED BY THE

WEIBULL DISTRIBUTION

I. Introduction

Problem Statement

Testing a complex system in order to determine its

reliability can be expensive in terms of time and money.

Even the preliminary design of a system requires advance

knowledge about how a network of components will have to

be structured to yield the desired system reliability. The

purpose of this thesis is to determine system reliability

based on reliability data about individual components

within a system.

Reliability

The reliability of a system is defined as the proba-

bility that the system will perform its intended function

for a specified period of time under stated conditions.

The current importance of reliability is due in large part

to the experience of the U.S. military during and immedi-

ately after World War II. Tremendous difficulties were

encountered in assuring reliable equipment for the fighting

I|1- - iiI I I. . . . . . .



forces. For example, during the war, 50% of all stored air-

borne electronic equipment became unserviceable before even

being used. The Army reported high truck engine and power

plant mortality rates. In 1947, the Navy stated that 70%

of its electronic equipment did not operate satisfactorily

(Ref 12:Sec I, 1-2). Although reliability theory and tech-

niques for reliability estimation have shown magnitudes of

improvement since World War II, there is still the need for

significant developments. As systems become more complex

and testing becomes more expensive (look at the space

shuttle as an example), accurate reliability estimation tech-

niques based on small sample sizes must be developed.

The Weibull Distribution

The Weibull probability density function was ini-

tially developed for the study of fatigue failure in

materials. Later, it was discovered that electron tubes of

various types fail according to the distribution (Ref 12:

Sec II, 55). Thus the Weibull can be used to express the

distribution of time to failure for many mechanical and

electrical devices. In addition, there is frequently the

assumption that component failures (especially electronic

components) are distributed according to the exponential

distribution. Zelen and Dannemiller (Ref 15) have pointed

out that the exponential distribution is generally not a

robust approximation to the Weibull, especially if the shape

parameter is greater than 1.
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The Weibull density function is

t- k

f(t;k,B,c) M k(t-c) -( ) k, > 0; c < t
ek

M 0 elsewhere,

where t is the time, e is the scale parameter, c is the

location parameter, and k is the shape parameter. The

scale parameter determines the spread or dispersion of the

function about its mean. T-e location parameter determines

the point of origin of the distribution. The shape param-

eter determines whether the failure rate is decreasing,

increasing, or invariant with time. This gives the Weibull

distribution flexibility to model components with failure

rates that decrease, increase, or remain constant over time.

For example, if the shape parameter is 1, the Weibull

degenerates to the exponential density function. If the

shape parameter is 3.5, the Weibull is an excellent approxi-

mation to the normal distribution. A shape parameter of

2 yields a function which, when correctly scaled, can approx-

imate Beta distributions that are skewed towards the right.

Fig. 1 shows the flexibility of the Weibull to model the

exponential, the normal, and the Beta distributions.

An individual component that follows a Weibull dis-

tribution in time to failure will have its reliability

expressed by

R(t) exp(-((t-c)/e) k). (2)

3
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Fig. 1. Weibull Distribution with Shape Parameters
of 1, 2, and 3.5

Therefore, determining the reliability of one component is

a relatively easy procedure of substituting into the reli-

ability equation. However, one is frequently interested

in determining the reliability of a system of several com-

ponents, each possessing a time to failure given by the

Weibull probability density function. Problems arise in

that analytical techniques designed to solve for the reli-

ability of complex systems quickly become overwhelming as

the number of components increases. Therefore, computer

4
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simulation has become a handy tool to utilize on complex

systems.

Survey of Past Work

Some of the original work in the use of Monte Carlo

methods for determining confidence limits on system relia-

bility was done by Donald Orkand (Ref 8) in 1960. He

pointed out the serious limitations in using only point

estimates of component reliability to determine a point

estimate of the system reliability. He also showed the

flexibility of using the Monte Carlo method and its adapta-

bility to the circuitry of various complex systems. Albert

Bernhoff (Ref 2) explained the problems of applying ana-

lytical approaches to find system reliability confidence

intervals by combining component reliability confidence

intervals. He concluded that the analytical approaches

generally do not work. In 1967, Louis Levy and Albert Moore

(Ref 5) developed a Monte Carlo technique for obtaining

reliability confidence intervals for systems with components

characterized by the exponential, normal, lognormal, Gamma,

and Weibull distributions. Robert Lannon (Ref 4) estab-

lished reliability confidence intervals for the Weibull dis-

tribution using a bivariate analysis of the shape and scale

parameters. Robert Snead (Ref 11) studied reliability

estimates using the Weibull, Gamma, and Logistic distribu-

tions. For each distribution, Snead used the property

that the reliability estimates are asymptotically normal.
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Thus he was able to perform a univariate analysis using

just the reliability parameter, as long as large sample

sizes existed. However, because the primary value in the

Monte Carlo method is to reduce the prohibitively expensive

testing of large samples of systems and their individual

components, it would be extremely helpful if a univariate

method could be developed for small sample sizes.

Darrel Thoman, Lee Bain, and Charles Antle (Refs

13 and 14) have done considerable research into the Weibull

probability distribution and the maximum likelihood esti-

mation of the Weibull parameters. Key results from their

studies show that, assuming the two-parameter Weibull (that

is, the shape and scale parameters are unknown while the

location parameter is zero), the distribution of the maxi-

mum likelihood estimator of reliability, R(t), depends only

on the true system reliability R(t) and the sample size n.

Also, R(t) is nearly unbiased and has a variance practi-

cally equal to the Cramer-Rao lower bound for the variance

of an unbiased estimator (Ref 13:363). These results form

the basis for the research done in this thesis.

Objectives

There are two objectives of this study. The first

is to simplify the bivariate analysis of Lannon by mapping

the shape and scale parameters onto the reliability param-

eter, resulting in a univariate analysis. The second is to

explore how far one can reduce the sample sizes ot component

6
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test data while retaining reasonably accurate confidence

intervals.

Approach

Several assumptions are necessary in order to make

the problem tractable. The first is that system components

have failure times represented by the Weibull probability

distribution. Also, all components must have been sub-

jected to reliability tests, allowing estimation of the

shape, scale, and location parameters. The distribution of

the estimators for the parameters must also be known.

Finally, there must be a known mathematical relationship

between the system reliability and component reliabilities

(Ref 7:459). In this thesis, it is assumed that the com-

ponents fail independently of one another. This allows for

the use of standard formulas for the reliability of systems

having series or parallel connections, and for the reduction

of complex systems into combinations of series and parallel

configurations. Orkand (Ref 8:7-8) describes procedures

to apply if there is a dependence relation among system

components.

The fundamental approach that will be applied

throughout this thesis is to determine reliability esti-

mates and the associated confidence intervals using the

Monte Carlo method. This method uses random sampling to

investigate the solution of deterministic or stochastic

problems. In essence, one inputs a set of random variables

7



from specified probability distributions, and then solves

the problem for each set of inputs to obtain a random

sample of outcomes (Ref 7:459). The steps to the method

are as follows:

1. Using the component test data (set of failure

times), calculate the maximum likelihood estimators for the

parameters of the underlying distribution. Do this for

all components.

2. Determine the joint distribution of the maximum

likelihood estimators. Repeat this for all components.

3. Generate a sample value for each parameter by

sampling from the distribution of the parameter.

4. Substitute the sample parameters into the com-

ponent's reliability equation to derive a sample component

reliability.

5. Repeat steps 3 and 4 for each component, and

then substitute the sample component reliabilities into the

system reliability equation to obtain a sample system reli-

ability.

6. Repeat steps 3-5 to obtain the desired number

of samples of the system reliability.

7. Order the system reliability samples and deter-

mine the desired confidence limits.

The primary advantage of the Monte Carlo method is

its adaptability to any type of complex system. It is a

proven method that can be used for the initial investigation

into any systems reliability problem that fits the

8



above-mentioned assumptions. It is also a valuable method

to apply when other methods fail due to the complexity of

the system (Ref 7:459).

1
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II. Theoretical Development

Step 2 of the Monte Carlo method requires knowledge

about the joint distribution of the maximum likelihood

estimators. Since an objective of this thesis is to

research a univariate Monte Carlo method, the distribution

of the single estimator, i(t), is important.

Maximum Likelihood Estimation

An estimator is simply an approximation to the

unknown value of some population parameter (Ref 9:39). For

example, if one is interested in the mean utility bill in

some city, he can sample from several different households

and use the sample mean as an estimator to the mean utility

bill for all the households within the city. Also, the

sample standard deviation is frequently used as an esti-

mator for the population standard deviation. A particular

type of estimator is the maximum likelihood estimator (MLE).

An example can best explain this estimator. Assume that

someone has a box containing ten balls, each of which is

either black or white, and is asked to estimate the number

of black balls based on a sample of three balls drawn from

the box. If the sample is three black balls, then the

maximum likelihood estimator of the total number of black

balls is ten. This is because a population of ten black

balls would maximize the probability of drawing the sample

10



of three black balls. In this case, that probability would

be one. Maximum likelihood estimators are those values of

the parameters which maximize the probability or the joint

density (the likelihood) of the observed sample (Ref 6:302).

Some symbols and special terminology need to be

introduced here. Let yly 2, ... PYn be n sample observations

taken on the corresponding random variables Y1 ,Y2 ... Yn"

Then if Y,2,.. Y are discrete random variables, the

likelihood of the sample, L, is defined to be the joint

probability of yly 2,... Yn" If Y,Y 2,... ,Yn are continuous

random variables, then the likelihood L is defined to be

the joint density evaluated at yly 2 .... 'Yn" In either the

discrete or the continuous case, maximum likelihood esti-

mators are those values of the estimators which maximize L,

the likelihood of the sample (Ref 6:303).

In researching the reliability of systems with com-

ponents that fail according to the Weibull probability dis-

tribution, the sample is a set of n failure times (say tI,

t2 ,. .. tn ) obtained by testing each component. The objec-

tive is to pick the values of the shape and scale parameters

(location parameter is assumed to be zero) that will maxi-

mize the likelihood of the observed failure times. As

defined earlier, the likelihood L equals the joint density

of the sample.

L - f(tl~t2,...,t n; k,e)

11



But since the failure times are independent of one another,

L - f(tl; k,e)f(t 2 ; k,e)... •t ; k,6)

To maximize L, the usual procedure is to take the partial

derivatives of L with respect to the parameters, set the

derivatives equal to zero, and then solve for the values of

the parameters. But maximizing In(L) is easier than maxi-

mizing L and will result in the same estimators for the

shape and scale parameters.

n
ln(L) - in[ 7T f(ti; k,6)]

i-I

- n kt ik-I tikiIi

n k

2[ln(k) + (k-l)ln(ti) - kin (8) - -)
i-i

n

n nrk + (k-l) n ti - nk In e
i-l

n
- k Vt k (3)

Now taking the partial derivative of ln(L) with respect

to e,

12



n k

a In L -- nk/e + k8 -k-l tk~4
i-I

Setting Eq (4) equal to zero and solving for e yields

1/k

Substituting the value of e into Eq (3) and taking the par-

tial derivative of in(L) with respect to k,

n n n

a ln n/k + int ) -n[ t I t)] t(6

i-l i-l i=l

Setting the derivative equal to zero yields

nn

1/-int i nt =0 7
n n i

iJl

Setting th deiatv eqa tozr id

n

i-t

Eqs (5) and (7) are two equations in the two unknowns, k

and e. Simultaneous solution of these equations yields the

maximum likelihood estimators of k and e.

The Distribution of R(t)

The MLE of reliability is found by substituting the

MLEs for k and e into the reliability formula, Eq (2).

13



k

R(t) w e (8)

If one repeatedly draws samples of size n from a population

distributed according to the Weibull, and uses the pre-

viously mentioned technique to find the MLE of reliability

for each sample, then a distribution of the MLE R(t) will

result. Let e (ie) k and k k/k. Thoman, Bain, andS s

Antle (Ref 13) have proven that the joint distribution of

8 and k is independent of e and k. They go on to proves 5

(Ref 14) that the distribution of R(t) depends only on R(t).

lnR(t) - -(tle)

ln[-ln R(t)] - k ln(t/O)

k/k ln[(t/) k ]

ln[-ln(R(t))] - 1/k in[(t/6) k A -k

k in[(-lnR(t))9 -]
s s

Since k and e are distributed independently of k and ,
s s

the distribution of R(t) depends only on R(t). Thus the

parameters t, k, and 0 can affect the distribution or R(t)

only through R(t) (Ref 14:363). This is a significant

result. It allows for the univariate analysis of R(t),

in place of the bivarlate analysis (using k and 0) that

Lannon did. What is being said is that, if two components

have different underlying Weibull distributions (different

shape and scale parameters), but both have the same

14



reliability, then they will have identical distributions

of their maximum likelihood estimators of reliability.

An important criteria of an estimator is its bias.

Usually a small or zero bias is desired. The bias, B, is

defined as the expected value of the estimator minus the

true value of the parameter being estimated. In this case,

B - E[R(t)] - R(t)

The bias of R(t) can be estimated by Monte Carlo simulation.

Thoman, Bain, and Antle (Ref 14:365) derived 10,000 esti-

tates of R(t) using sample sizes of 8 to 100 and true reli-

abilities of 0.5 to 0.98. The 10,000 estimates were aver-

aged to obtain E[R(t)], and then the true reliability was

subtracted to yield the bias. Unfortunately, Thoman, Bain,

and Antle did not include enough significant digits to be

helpful. David Antoon (Ref 1) did a Monte Carlo analysis

and derived 2000 estimates of R(t). The bias was calcu-

lated for the same range of sample sizes and true reliabili-

ties as Thoman, Bain, and Antle. Antoon'.s results compared

favorably and are shown in Table I. As can be seen, the

bias of R(t) is very close to zero. Thus the MLE, R(t),

is almost an unbiased estimator of R(t).

Another desired characteristic of an estimator is

that it have a small variance. In this case,

M2Var[R(t)] - [E(R(t))-R(t)]

i-l

15
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where M is the Monte Carlo size, or the number of samples

generated. As mentioned, Thoman, Bain, and Antle generated

10,000 samples from which they calculated estimates of the

variance of R(t). Table II (Ref 14:366) shows their

results. As can be seen, only three significant digits

accuracy is reported. Antoon (Ref 1) calculated the

empirical variance of R(t) based on 2000 samples and the

results in Table III show empirical variance as a function

of sample size and reliability.

It is useful to compare the empirical variance of

R(t) with the Cramer-Rao Lower Bound (CRLB). The CRLB

describes the lower limit for the variance of an unbiased

estimator. Although R(t) is not unbiased, Table I does show

the bias approaching zero as the sample size increases.

Thus the asymptotic variance of R(t) equals the CRLB.

Rao's results on the asymptotic distribution of a function

of asymptotic normal variables (Ref 10) can be applied to

R(t).

CRLB 2'R 2 +2a _R _R + j2 R 2
'~ LVJ ] 3,i 3e k KJ

2 2
where (Y!, a, , and o[ are elements of the asymptotic

e
covariance matrix of (e,k). Thoman, Bain, and Antle (Ref

13:449) show that

a 2 1.109 2 /(k 2) - .608k 2 .n ag, = .2570/n

17
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Therefore (Ref 14:365),

CRLB - R2 (InR)2 [1.109- .514 In(-InR)

2
+ .608[in(-lnR)] ]/n (9)

One can see that the CRLB approaches zero as the sample

size gets larger or the reliability approaches one. Snead

(Ref 11:22) found the CRLB by using the asymptotic covari-

ance matrix and numerous algebraic operations involving

n, t, k, and e. Eq (9) represents the CRLB as a function

of just R(t) and n. This is a significant simplification

over Snead's method without the loss of any accuracy. Eq

(9) was used to generate the data in Table IV which shows

the CRLB as a function of sample size and reliability. One

would expect that the Table IV values should be less than

the corresponding empirical variances in Table III. This

is generally correct, especially at low reliabilities and

small sample sizes. Occasionally, due to Monte Carlo vari-

ability, the empirical variance is less than the CRLB.
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III. Procedure

The essential thrust of this thesis is to test a

univariate method of finding confidence intervals for the

reliability of complex systems over a specified mission

time. The method will incorporate the knowledge gained in

Chapter II pertaining to the bias and empirical variance

of R(t).

Components

To fully test the method, a variety of systems com-

posed of a variety of components should be considered. The

true reliability of component i, R i , is found by sub-

stituting into the Weibull reliability formula, Eq (2).

In each case, the mission time, t, is arbitrarily set at

100 hours. The following components were used:

Component 1
Failure Distribution Weibull
Parameter Values k - 2 6 - 250 c - 0
True Reliability R= exp[-(100/250) I .85214

Component 2
Failure Distribution Weibull
Parameter Values k - 3 6 - 210 c = 0
True Reliability R 2= exp[-(100/210) I .89765

Component 3
Failure Distribution Weibull
Parameter Values k - 2 e - 300 c - 0
True Reliability R3 = exp[-(100/300) I = .89484
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Component 4
Failure Distribution Weibull
Parameter Values k - 3.5 e = 150 c M 0

True Reliability R - exp[-(lO0/150) 3 5] - .78512

Component 5
Failure Distribution Weibull
Parameter Values k - 2.5 e = 250 c - 0
True Reliability R5= expt-(l00/250)

2 .51f .90376

System Networks

The five components were combined to form various

kinds of systems. Looking at a variety of systems helps

to assure that the results are not unique to the particular

configuration of a system. Four different systems were

used and are shown in Fig. 2.

System I consists of three components in series.

The reliability of a system with components connected in

series is found by taking the products of the individual

component reliabilities. Therefore, the true reliability

of System 1, Rs, is

R = R1R2R 3  (10)

= (.85214)(.89765)(.89484)

=.68448

System 2 consists of one component connected in

series with two in parallel. To simplify the reliability

equations, let be the probability of failure for com-

ponent i. Therefore, Qi = l-Ri" The true reliability of
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System 2, R , iss 2

R 82 - R1 (l - Q2Q3) (11)

= .85214[ - (.10235) (.10516)]

- .84297

System 3 consists of three components connected in

parallel. The reliability of this system is simply one

minus the probability that all components fail. Thus the

true reliability of System 3, Rs 3 is

R I - QIQ 2 Q 3  (12)

= I - (.14786)(.10235)(.10516)

= .99841

All systems can be seen as consisting of subsystems

of components which are either series-connected (such as

System 1) or parallel-connected (such as System 3). The

subsystems are in turn connected to one another in either

series or parallel. Thus one can combine subsystem relia-

bilities using either the series formula, Eq (10), or the

parallel formula, Eq (12), until the system reliability

is found. This was done for System 2 and will now be done

for the larger complex network, System 4.
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Rs4 - RI 1  - Q 2 [l - Rs(1 - Q3 Q4 )]] (13)

- .85214[l - .10235(1 - .90376(1 - (.10516)(.21488))]]

- .84197

The Monte Carlo Method

Now the true reliabilities of all five components

and all four systems have been calculated. But, if the

reliability engineer had all the true reliabilities, he

would not need to go through any kind of Monte Carlo simula-

tion. In this study, the true reliabilities are considered

because, after the simulation is over, the true reliabili-

ties will provide an absolute measure against which the

univariate method can be gauged.

To find confidence intervals about the true system

reliabilities, it is desired to modify the Monte Carlo

method presented in Chapter I to incorporate the theoretical

knowledge gained in Chapter II about the bias and empirical

variance of R(t). The steps to the Monte Carlo method as

applied in this thesis are as follows. A discussion of

each step follows this list.

1. Using the true shape, scale, and location

parameters, generate a simulated sample of test data (com-

ponent failure times) from the Weibull distribution.

2. Based on the simulated test data, calculate the

maximum likelihood estimators of the shape and scale
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parameters. The location parameter is assumed to be

zero.

3. Substitute the estimators of the shape and

scale parameters into the reliability equation to obtain

a maximum likelihood estimator of the component reliability.

4. Subtract the bias from the maximum likelihood

estimator of the reliability to obtain an unbiased esti-

mator of the component reliability.

5. Form a vector of component reliability esti-

mates distributed normally about the unbiased estimator.

6. Repeat steps 1-5 for each component.

7. Using the reliability equation of a complex

system, combine the vectors of component reliabilities to

obtain a vector of system reliabilities.

8. Order the vector of system reliabilities and

determine the 99, 95, 90, 80, 70, 60, and 50 percent one-

sided confidence intervals. Note if each of these inter-

vals contains the true system reliability.

9. Repeat steps 1-7 until the desired Monte Carlo

size is reached.

10. To measure the accuracy of the confidence

limits, determine the percentage of the runs in which each

of the confidence intervals covered the true system reli-

ability.

The computer program which executes the above Monte

Carlo method is shown in the appendix. Some elaboration is

necessary to explain individual steps of the technique.
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In step 1, Weibull-distributed sample failure times were

generated by using the subroutine GGWIB from the Inter-

national Mathematical and Statistical Libraries (IMSL).

In step 2, the MLEs of the shape and scale parameters (k

and 9) were determined by simultaneous solution of Eq (5)

and Eq (7) using the nonlinear simultaneous equation

solver ZSYSTM, also from the IMSL library. In step 3, the

MLE of reliability, R(t), was found by substitution of
A A

k and 6 into Eq (8). In step 4, the bias of the MLE R(t)

was determined by interpolation (using cubic splines

because of nonlinearity) in Table I. Note that the result

of step 4 is an estimator that is usually less than the

maximum-likelihood estimator (because the bias is usually

positive). This will result in more accurate and generally

smaller component reliability estimates and therefore

generally smaller estimated system reliabilities. Step 4

is an attempt to improve on the optimistic (high) system

reliability confidence limits generated by Snead (Ref 11)

in his univariate asymptotic method. Step 5 is a crucial

step. Here the assumption was made that the unbiased com-

ponent reliability estimates are distributed normally. The

mean is assumed to be the unbiased R(t) obtained from

step 4. The variance is found by interpolating out of

Table III, again using a cubic splines interpolation

because of nonlinearity in the table. Since this inter-

polated variance should be no less than the Cramer-Rao

Lower Bound, the CRLB is also calculated using Eq (9).
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Then the higher of the two is used as the variance to form

a vector of 2000 random and normally-distributed component

reliability estimates. (The IMSL subroutine GGNML was used

to generate random normal deviates.) In step 7, the

vectors of component reliability estimates are combined

using the systems reliability equations [Eqs (10), (11),

(12), and 13)]. The result is a vector of 2000 estimated

system reliabilities for each system. These vectors are

each ordered in ascending sequence and then the 1, 5, 10,

20, 30, 40, and 50 percentiles are chosen to determine the

99, 95, 90, 80, 70, 60, and 50 percent lower confidence

limits. Each of these lower confidence limits is compared

to the true system reliability. If the lower confidence

limit is less than or equal to the true system reliability,

then the associated confidence interval contains the true

system reliability.

The entire experiment is repeated again and again

(step 9) until the desired Monte Carlo size is reached.

In this study, 600 runs of the simulation were made. In

each run, and for each system and each confidence interval,

it was noted if the confidence interval contained the true

system reliability. Ideally, the X percent confidence

interval should contain the true system reliability X per-

cent of the time. For example, it is desired that the 95

percent confidence interval contain the true system reli-

ability during 95 percent of the 600 runs. This provides
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an absolute test (step 10) of the accuracy of this uni-

variate method.

Additional Testing and

Sensitivity Analysis

In an attempt to validate the results of the Monte

Carlo technique, some additional testing was conducted. One

test was to check the assumption of normality made in

step 5. It is already known that estimates of component

reliability are only asymptotically normal. A Kolmogorov-

Smirnoff test was run to check the distribution of com-

ponent reliability estimates.

Even though Table II, the variances of R(t) given

by Thoman, Bain, and Antle (Ref 14:366), contains only

three significant digits at most, it was decided to check

if the results were sensitive to the use of that table.

Also, since a faulty random number generator can signifi-

cantly affect the results of any simultation, a random

normal generator other than GGNML was tried. GGNML uses

the inverse normal function of uniform deviates. The Box-

Muller (Ref 3:610-11) was also utilized. This technique

uses the natural logarithm and trigonometric functions to

generate normal deviates from random uniform variables.

Since GGNML and Box-Muller use different uniform deviate

generators, the generation of uniform deviates is also

being checked by two methods. Another desirable
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characteristic of a simulation is that it not be sensitive

to the choice of the initial random number seed. Therefore,

simulations were run with different seeds.
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IV. Results

Base Case

Tables V through VIII contain the base case results

of the Monte Carlo simulation for Systems 1 through 4.

For each system, the simulation was run for component test

data sample sizes of 10, 15, 20, 50, and 100. Each table

entry is the percentage of the Monte Carlo runs in which

the simulated confidence interval covered the true system

reliability. For example, in the first row of Table V and

with a sample size of 10 failure times for each component,

the 99 percent confidence interval contained the true reli-

ability of System 1 only .9383 of the runs. As the com-

ponent sample size increases in that first row, one can

see that the confidence interval coverage improves until,

at a sample size of 100, the coverage is .9817, almost 99

percent. This general improvement is also the case when

looking at increasing sample sizes for the other confidence

intervals.

Tables VI through VIII reveal that Systems 2, 3,

and 4 experience the same improvements as component sample

sizes get larger. For each system, the confidence interval

coverage is low for small sample sizes. The reason for this

is high or optimistic system reliability estimates. As a

result, the lower confidence limits are also too high and
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TABLE V

SYSTEM 1 CONFIDENCE INTERVAL COVERAGE OF THE
TRUE SYSTEM RELIABILITY

Confidence Interval Sample Size
(Percent) 10 15 20 50 100

99 .9383 .9450 .9617 .9733 .9817

95 .8867 .8967 .9050 .9267 .9333

90 .8267 .8633 .8617 .8783 .8950

80 .7417 .7683 .7800 .7983 .8233

70 .6650 .6683 .6817 .7183 .7200

60 .5750 .5783 .5700 .6167 .6367

50 .4917 .5083 .4833 .5067 .5333

TABLE VI

SYSTEM 2 CONFIDENCE INTERVAL COVERAGE OF THE

TRUE SYSTEM RELIABILITY

Confidence Interval Sample Size
(Percent) 10 15 20 50 100

99 .8717 .9100 .9383 .9450 .9667

95 .7933 .8467 .8600 .9083 .9200

90 .7467 .7917 .8083 .8617 .8817

80 .6750 .7017 .7200 .7767 .7917

70 .6050 .6033 .6467 .6750 .7117

60 .5083 .5067 .5433 .5567 .5950

50 .4283 .4283 .4700 .4583 .5067
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TABLE VII

SYSTEM 3 CONFIDENCE INTERVAL COVERAGE OF THE
TRUE SYSTEM RELIABILITY

Confidence Interval Sample Size
(Percent) 10 15 20 50 100

99 .7967 .8717 .9017 .9467 .9717

95 .6517 .7867 .7950 .8700 .9017

90 .5917 .7033 .7050 .8100 .8467

80 .4633 .5283 .5733 .6850 .7467

70 .3600 .4183 .4617 .5783 .6133

60 .2667 .3200 .3650 .4683 .5200

50 .1850 .2267 .2767 .3683 .4550

TABLE VIII

SYSTEM 4 CONFIDENCE INTERVAL COVERAGE OF THE
TRUE SYSTEM RELIABILITY

Confidence Interval Sample Size
(Percent) 10 15 20 50 100

99 .8750 .9100 .9417 .9483 .9750

95 .7983 .8433 .8567 .9067 .9200

90 .7400 .7933 .8033 .8583 .8817

80 .6783 .7067 .7183 .7733 .7767

70 .5967 .6100 .6450 .6633 .7067

60 .5100 .5083 .5533 .5583 .5983

50 .4350 .4233 .4733 .4550 .4950
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the confidence interval is not wide enough to cover the

true system reliability.

An unexpected result from the simulation was the

effect of true system reliability on the confidence inter-

val coverage. It appears that a lower system reliability

corresponds to a more accurate confidence interval.

System 1, with a reliability of .68448, has consistently

more accurate confidence interval coverage than any other

system. Systems 2 and 4 both have reliabilities of about

.84 and corresponding entries in Table VI and VIII are

very close. System 3 has the highest reliability, .99841,

and also the least accurate confidence intervals. Even at

a sample size of 100, Table VII shows the 60 and 70 percent

confidence interval coverage being eight to nine percent

too low. Other systems have confidence intervals for a

sample size of 100 that are always less than four percent

away from the ideal accuracy.

Sensitivity Analysis

Sensitivity analysis was conducted to test some of

the model inputs. To build confidence in the results of a

simulation, it is desired that the results not be sensi-

tive to the choice of random number streams. Therefore,

a different initial random number seed was chosen and the

results for all four systems are shown in Table IX. The

95, 90, and 80 percent confidence intervals were calculated
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TABLE IX

CONFIDENCE INTERVAL COVERAGE WITH A

DIFFERENT RANDOM NUMBER STREAM

Confidence Interval Sample Size
(Percent) 10 15 20 50 100

System 1

95 .8917 .8883 .9217 .9233 .9467

90 .8350 .8317 .8917 .8717 .8850

80 .7433 .7417 .7833 .7783 .7850

System 2

95 .8300 .8533 .8500 .8900 .9300

90 .7800 .8050 .8017 .8417 .8650

80 .6883 .6917 .7067 .7500 .7750

System 3

95 .6750 .7433 .8133 .8550 .9050

90 .6050 .6683 .7250 .7867 .8300

80 .4650 .5200 .5833 .6667 .7150

System 4

95 .8233 .8583 .8517 .8867 .9233

90 .7817 .8067 .7983 .8383 .8683

80 .6867 .7017 .7050 .7533 .7717
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and the table reveals only slight variations from the cor-

responding entries in Tables V through VIII.

A faulty random number generator, especially one

that does not generate enough extreme values of the dis-

tribution, can significantly affect the results of this

simulation. Thus the IMSL random normal generator GGNML

was replaced with the Box-Muller normal generator. The

Box-Muller method is exact. That is, if the uniform

generator is truly generating random uniform deviates,

then the Box-Muller equations (Ref 3:610) will output truly

random normal deviates. This will guarantee a proper dis-

tribution in the tails of the normal density function.

Simulation runs at sample sizes of 10 and 15 were made and

confidence interval coverage is shown in Table X. Again,

only small variations (due to Monte Carlo variability)

exist between this table and Tables V through VIII.

Thoman, Bain, and Antle calculated the empirical

variances displayed in Table II. Although they reported

only three significant digits, they did use a Monte Carlo

size of 10,000 as opposed to Table III, in which more sig-

nificant digits are shown, but the Monte Carlo size was

2000. Thoman, Bain, and Antle's table was used to see if

significant variations would occur. The 95, 90, and 80

percent confidence interval coverage is shown in Table XI

for sample sizes of 10, 15, 20, and 50. Differences

between these results and the base case results are minor.
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TABLE X

CONFIDENCE INTERVAL COVERAGE WITH THE BOX-MULLER
RANDOM NUMBER GENERATOR

Confidence Confidence
Interval Sample Size Interval Sample Size
(Percent) 10 15 (Percent) 10 15

System I System 3

99 .9433 .9467 99 .7950 .8667

95 .8783 .8933 95 .6733 .7367

90 .8217 .8300 90 .5900 .6650

80 .7367 .7433 80 .4417 .5117

70 .6517 .6533 70 .3667 .4250

60 .5533 .5733 60 .2783 .3033

50 .4850 .4750 50 .1883 .2183

System 2 System 4

99 .8650 .9050 99 .8583 .9083

95 .8150 .8333 95 .8167 .8383

90 .7533 .7750 90 .7633 .7767

80 .6867 .7000 80 .6900 .6967

70 .6017 .5900 70 .5950 .5967

60 .5017 .5267 60 .5000 .5183

50 .4100 .4283 50 .4033 .4367
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TABLE XI

CONFIDENCE INTERVAL COVERAGE WITH EMPIRICAL
VARIANCES OF THOMAN, BAIN, AND ANTLE

Confidence Interval Sample Size
(Percent) 10 15 20 50

System 1

95 .8917 .8817 .9217 .9233

90 .8350 .8300 .8900 .8750

80 .7417 .7400 .7833 .7800

System 2

95 .8300 .8533 .8500 .8900

90 .7800 .8050 .8017 .8417

80 .6883 .6867 .7067 .7500

System 3

95 .6750 .7417 .8133 .8583

90 .6050 .6650 .7250 .7867

80 .4650 .5200 .5817 .6667

System 4

95 .8233 .8583 .8517 .8867

90 .7817 .8083 .7983 .8383

80 .6867 .6950 .7050 .7533
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The sensitivity analysis has revealed only small

variations (a maximum of less than five percent) between

the base case and choice of random number stream, type of

normal and uniform random number generator, and choice of

empirical variance table. These slight differences can

occur simply as a result of the variability of Monte Carlo

simulation (as in any random process). A more fundamental

question is the assumption of normality made in step 5 of

the Monte Carlo method.

Kolmogorov-Smirnoff Test

of Normality

Since the Monte Carlo size was 600, there were

also 600 samples of failure times drawn for each of the

five components. In turn, the sample sizes were either 10,

15, 20, 50, or 100. As a result, for each component and

for each of the sample sizes, there were 600 estimates of

the component reliability. A Kolmogorov-Smirnoff test was

run for the distribution of these reliability estimates.

The null hypothesis was that the estimates are normally dis-

tributed with a mean equal to the true component reliabil-

ity and a variance equal to the interpolated value from

Table III or the Cramer-Rao Lower Bound (whichever is

larger). The Kolmogorov-Smirnoff test was made with a .05

probability of Type I error. That is, if the distribution

is actually from the normal density function, the test

still has a .05 probability of rejecting the null hypothesis.
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Table XII contains the results of the test as well as the

bias of the estimated reliability and the difference between

the sample standard deviation and the assumed population

standard deviation. There is a tendency to reject normality

for sample sizes of 20 or less and to accept normality for

sample sizes of 50 or greater. The table also suggests

that the reason for rejecting normality is skewness in the

distribution of R(t) for small sample sizes. For example,

Component 3 was rejected at a sample size of 15 (with a

bias of .00132 and a difference of standard deviations of

-. 00011), while Component 2 passed the normality test at

a sample size of 100 (with a bias of -. 00165 and a differ-

ence in standard deviations of .00139). If the distribu-

tion of R(t) is skewed for small sample sizes, rejection

of normality would still occur even though the bias and

difference in standard deviations is so small. There is a

reasonable explanation for this skewness. Since the reli-

ability estimates are bounded by zero and one, as the true

component reliability approaches one, the distribution of

the reliability estimates is significantly affected by the

upper bound of one, but not by the lower bound of zero.

Therefore, the distribution would not be symmetric, but be

skewed to the left.

41



TABLE XII

KOLMOGOROV-SMIRNOFF TEST OF NORMALITY FOR DISTRIBUTION
OF COMPONENT RELIABILITY ESTIMATES

Sample Size
10 15 20 50 100

Component 1

Reject/Pass Reject Reject Reject Pass Pass

E(R) - R .00276 .00179 .00072 .00031 -. 00003

(s - a) .00439 .00133 -.00034 .00149 -. 00016

Component 2

Reject/Pass Reject Reject Reject Pass Pass

E(R) - T .00199 -.00227 -.00131 -. 00073 -.00165

(s - a) -.00120 .00303 .00221 .00072 .00139

Component 3

Reject/Pass Reject Reject Reject Pass Pass

E(R) - R .00296 .00132 .00077 -. 00117 -.00086

(s - a) -. 00118 -.00011 .00209 -. 00137 .00018

Component 4

Reject/Pass Reject Reject Pass Pass Pass

E(R) - R .00339 .00834 .00278 -.00284 .00087

(s - a) .00068 -. 00266 -. 00352 -. 00024 -. 00045

Component 5

Reject/Pass Reject Reject Reject Pass Reject

E(R) - R .00121 -. 00137 .00239 -.00031 .00120

(s - a) .00044 .00237 .00135 .00011 -. 00019
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V. Conclusions and Recommendations

Conclusions

The univariate method developed in this thesis

works best when component reliabilities and system relia-

bilities are not high (say, less than .9). If component

reliabilities are higher than .9, then the skewness of the

distribution of R(t) has a definite impact on the results.

If the system reliability is greater than .9, then it is

very sensitive to even slight changes in component reliabil-

ity estimates. Therefore, even a slight skewness will sig-

nificantly affect the system reliability estimates. If

high component or system reliabilities exist, then they can

be compensated for by large sample sizes. A sample size of

50 or greater is adequate unless the component or system

reliabilities exist, then they can be compensated for by

large sample sizes. A sample size of 50 or greater is

adequate unless the component or system reliabilities are

extremely close to one.

Recommendations

The most immediate suggestion for further work is

that investigation be conducted on the distribution of com-

ponent reliability estimates, R(t), based on sample sizes

of less than 50. The distribution is definitely not normal.
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... ... . V .. . 1

Therefore, it would be helpful to try fitting other dis-

tributions to the empirical distribution of R(t). Since

R(t) is bounded between zero and one, a logical choice is

the Beta distribution. But most importantly, the Beta can

also fit the skewness of the empirical distribution.

Because many critical components and systems are built to

demonstrate extremely high reliabilities, particular empha-

sis should be placed on component reliabilities of greater

than .9.

Once a close fit is found for the distribution of

component reliability estimates, the next step is Monte

Carlo simulation of the reliability of entire systems. The

computer program shown in the appendix has the capability

to execute the systems simulation. Only slight modifica-

tions are required to change the sampling distribution (say

the Beta instead of the normal), component test data sample

size, true component reliabilities, or the configuration

of systems.
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Appendix

Computer Program Listing

PROGRAM WEIB (TAPE1, INPUT, OUTPUT)

C
C *******************************************************************

C *

C * FOR EACH COMPONENT OF A COMPLEX SYSTEM, THIS PROGRAM *

C * GENERATES A SAMPLE OF SIZE NSAM FROM THE WEIBULL DISTRIBUTION *

C * USING THE TRUE PARAMETERS TK (SHAPE), TTHETA (SCALE), AND TC *

C * (LOCATION). FROM THIS SAMPLE, THE MAXIMUM LIKELIHOOD *

C * ESTIMATORS (MLES) FOR K AND THETA ARE DERIVED USING HARTER & *

C * MOORES ITERATIVE SCHEME AND THE SIMULTANEOUS EQUATION SOLVER *

C * ZSYSTM. THE MLES ARE COMBINED TO YIELD RCHAT, THE MLE FOR THE *

C * COMPONENT RELIABILITY. GIVEN THE RELIABILITY AND THE SAMPLE *

C * SIZE NSAM, RCHAT IS ASYMPTOTICALLY NORMALLY DISTRIBUTED WITH A *
C * SPECIFIED VARIANCE. THEREFORE WE CAN SAMPLE FROM THE NORMAL *

C * DISTRIBUTION TO OBTAIN A VECTOR OF SAMPLE COMPONENT *

C * RELIABILITIES. THIS PROCESS IS REPEATED FOR EACH COMPONENT *

C * AND THEN THE RELIABILITIES ARE COMBINED FOR 4 DIFFERENT TYPES *

C * OF SYSTFoIS TO YIELD 4 VECTORS OF SAMPLE SYSTEM RELIABILITES. *

C * THESE VECTORS ARE ORDERED AND THEN THE 95, 90, AND 80 PERCENT *

C * LOWER CONFIDENCE LIMITS ARE PICKED. THIS ESTABLISHES THE 95, *

C * 90, AND 80 PERCENT CONFIDENCE INTERVALS FOR EACH SYSTEM AND IT *

C * IS NOTED WHETHER EACH OF THESE INTERVALS CONTAINS THE TRUE *

C * SYSTEM RELIABILITY. *

C * THE ABOVE PROCESS IS REPEATED FOR NOLMC MONTE CARLO RUNS, WITH *

C * COUNTERS FOR EACH SYSTEM TO TRACK THE NUMBER OF TTI4ES THAT THE *

C * THE ABOVE PROCESS IS REPEATED FOR NOLMC MONTE CARLO RUNS, WITH *

C * COUNTERS FOR EACH SYSTEM TO TRACK THE NUMBER OF TIMES THAT THE *

C * CONFIDENCE INTERVALS CONTAIN THE TRUE SYSTEM RELIABILITY. *
C * *
C
C

DIMENSION ARCHAT (2000,5), ATRS (4), BI (12,15), C (4,4), DEV
1 (2000), PARAM (3,5), QNTKS (40), R (205,5), RC (2000,5), RCHAT

2 (5), RCHSIG (5), RLBS (12), RS (2000), SIG (12,15), SIGSQ

3 (12,15), SMSZ (15), TEMP (200), TRC (5), TRS (1), VRH (10,11),
4 WK (200), WKAREA (10), X (2)

EXTERNAL F
DOUBLE PRECISIONDSEED

REAL KHAT

DATA RLBS / .5, .55, .6, .65, .7, .75, .8, .85, .9, .925, .95,

1 .98 /
C

DATA SMSZ / 8., 9., 10., 11., 12., 13., 14., 15., 20., 25.,

1 30., 40., 50., 75., 100. /
C
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DATA VRH / 266., 242., 194., 163., 130., 95., 59., 41., 25.,
1 6., 200., 187., 153., 130., 103., 76., 47., 33., 19., 5., 167.,
2 154., 126., 107., 86., 63., 39., 27., 16., 4., 124., 118., 99.,
3 86., 70., 51., 32., 22., 13., 3., 90., 86., 72., 62., 51., 37.,
4 23., 16., 9., 2., 72., 68., 58., 50., 41., 30., 19., 13., 7.,
5 2., 59., 57., 48., 42., 34., 25., 16., 11., 6., 1., 43., 42.,
6 36., 31., 26., 19., 12., 8., 5., 1., 34., 33., 29., 25., 20.,
7 15., 9., 7., 4., 1., 23., 22., 19., 17., 14., 10., 6., 4., 3.,
8 1., 17., 16., 14., 12., 10., 8., 5., 3., 2., 1. /

C
DATA QNTKS / .975, .842, .708, .624, .563, .519, .483, .454,

1 .430, .409, .391, .375, .361, .349, .338, .327, .318, .309,
2 .301, .294, .287, .281, .275, .269, .264, .259, .254, .250,
3 .246, .242, .238, .234, .231, .227, .224, .221, .218, .215,
4 .213, .210 I

C
C INITIALIZE VARIABLES

Pi - 4. * ATAN(O.)
DSEED - 4000.ODO
T = 32.
CALL RANSET (T)
TIME - 100.
NRLBS - 12
NSMSZ - 15
NSMSZ1 - NSMSZ - I
NRLBSI - NRLBS - 1
ISD -12
NTRUNC = 0
NS1C99 = 0
NSIC95 0

NSIC90 = 0
NS1C80 = 0
NS1C70 0

NS1C60 = 0
NSIC50 = 0

NS2C99 - 0
NS2C95 = 0
NS2C90 = 0
NS2C80 = 0

NS2C70 = 0
NS2C60 = 0
NS2C50 = 0
NS3C99 = 0
NS3C95 = 0
NS3C90 = 0
NS3C80 = 0
NS3C70 = 0
NS3C60 = 0
NS3C50 = 0

NS4C99 m 0
NS4C95 = 0
NS4C90 = 0
NS4C80 = 0

NS4C70 = 0
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NS4C60 = 0

NS4C50 = 0

C
PRINT 409

C READ THE SAMPLE SIZE AND NUMBER OF MONTE CARLO RUNS
READ *, NSAM, NOLMC
PRINT 419, NSAM, NOLMC
RNSAM - NSAM

C READ THE TRUE COMPONENT PARAMETERS
READ *, ((PARAM(I, J), II, 3), J-1, 5)
PRINT 429, ((J, (PARAM(I, J), I-I, 3), CMPREL(TIME, PARAM(I, J),

1 PARAM(2, J), PARAM(3, J))), J-1, 5)
READ (1, *) ((SIG(I, J), J=1, 15), 1-1, 12)
READ (1, *) ((BI(I, J), J-1, 15), I-I, 12)

DO 10 I 1 1, 12
DO 10 J 1 1, 15
SIGSQ(I, J) - SIG(I, J) * SIG(I, J) * 1.E4

10 CONTINUE

PRINT 439, ((SIG(I, J), J-1, 15), I-I, 12)
PRINT 439, ((BI(I, J), J=1, 15), I=I, 12)

C

C THIS OUTSIDE LOOP FROM HERE TO STATEMENT 300 COMPLETES
C NOLMC MONTE CARLO RUNS OF THE SIMULATION.
C

DO 300 NCOUNT - 1, NOLMC
C

C

C FOR EACH OF 5 COMPONENTS, THIS LOOP GENERATES THE MLE OF RCHAT
C FROM THE MLES OF K AND THETA. IT DETERMINES THE VARIANCE OF
C RCHAT AND THEN SAMPLES FROM THE NORMAL DISTRIBUTION FOR NDEV
C SAMPLE RELIABILITIES OF EACH COMPONENT.
C

DO 290 J = 1, 5
TK = PARAM(I, J)
TTHETA = PARAM(2, J)
TC - PARAM(3, J)

C PASS INFORMATION ON COMPONENT NUMBER AND
C SAMPLE SIZE THRU ARRAY R

R(205, 1) - J

R(204, J) - NSAM
C DETERMINE THE TRUE COMPONENT RELIABILITY

TRC(J) - CMPREL(TIME, TK, TTHETA, TC)
C
C GATHER NSAM FAILURE TIMES FROM THE
C WEIBULL DISTRIBUTION WITH TRUE PARAMETERS
C TK,TTHETA, AND TC
C

CALL GGWIB (DSEED, TK, NSAM, TEMP)
DO 20 1 - 1, NSAM
R(I, J) - TTHETA * TEMP(I) + TC

20 CONTINUE
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C DETERMINE THE LIKELIHOOD OF DRAWING THIS SAMPLE
C USING THE TRUE K, THETA, AND C
C
C DETERMINE THE MLE OF THETA AND K
C BY HARTER & MOORES ITERATIVE SCHEME
C (ZSYSTM SOLVES THE TW1O NONLINEAR SIMULTANEOUS EQUATIONS)
C

EPS - i.E - 10
NSIG -8
N 2
NSTART 0

START 2.55
30 ITMAX 50

SUMXIK 0.
X(I) - START

DO 40 1 - 1, NSAM
40 SUMXIK - SUMXIK + R(I, J) ** X(1)

X(2) - (SUMXIK / NSAM) ** (I. / X())
CALL ZSYSTM (F, EPS, NSIG, N, X, ITMAX, WKAREA, R, IER)

KHAT - X(1)
THAT - X(2)

C
IF (ITMAX .EQ. 50 .OR. KHAT .LT. 0. .OR. THAT .LT. 0. .OR.

I IER.NE.0) GO TO 200
C AND PRINT ERROR MESSAGE THEN RESTART ITERATION

C WITH A DIFFERENT KHAT
C
C DETERMINE RHAT, THE MLE OF THE COMPONENT RELIABILITY, USING
C THE TRUE C AND THE MLES OF K AND THETA

RCHAT(J) - CMPREL(TIME, KHAT, THAT, TC)
C
C GIVEN THE MLE OF THE COMPONENT RELIABILITY AND THE SAMPLE SIZE,
C ENTER THE 2-DIMENSIONAL ARRAY BI AND FIND THE BIAS OF THE
C ESTIMATOR

DO 50 1 - 1, NSMSZl
LSMSZ - I

IF (RNSAM .LE. SMSZ(I+1)) GO TO 60

50 CONTINUE
GO TO 90

60 IF (RCHAT(J) .LT. .5) GO TO 100
DO 70 I - 1, NRLBS1
LRLBS = I

IF (RCHAT(J) .LE. RLBS(I+I)) GO TO 80
70 CONTINUE

GO TO 90
80 CALL IBCICU (BI, ISD, RLBS, NRLBS, SMSZ, NSMSZ, LRLBS, LSMSZ,

I C, WK, IER)
CALL IBCEVU (RLBS, NRLBS, SMSZ, NSMSZ, LRLBS, LSMSZ, C, -"

1 RCHAT(J), RNSAM, BIAS, IER)
IF (LRLBS .LT. NRLBS) GO TO 110

90 BIAS , 0.
GO TO 110

100 IF (RNSAM .EQ. SMSZ(LSMSZ + 1)) LSMSZ . LSMSZ + 1
BIAS - BI(I, LSMSZ)
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110 RCHAT(J) - RCHAT(J) - BIAS
ARCHAT(NCOUNT, J) - RCHAT(J)

C
C GIVEN THE UNBIASED ESTIMATOR OF THE COMPONENT RELIABILITY,
C ENTER THE 2-DIMENSIONAL ARRAY SIG AND FIND THE STANDARD
C DEVIATION OF THE UNBIASED ESTIMATOR

Z - RCHAT(J)
RCRLB - SQRT(Z ** 2 * (ALOG(Z)) ** 2 * (1.109 - .514 *

1 ALOG( - ALOG(Z)) + .608 * (ALOG( - ALOG(Z))) ** 2) / RNSAM)
DO 120 I - 1, NSMSZ1
LSMSZ - I
IF (RNSAM .LE. SMSZ(I+1)) GO TO 130

120 CONTINUE
GO TO 160

130 IF (RCHAT(J) .LT. .5) GO TO 170
130 IF (RCHAT(J) .LT. .5) GO TO 170

DO 140 I = 1, NRLBS1
LRLBS - I
IF (RCHAT(J) .LE. RLBS(I+1)) GO TO 150

140 CONTINUE
GO TO 160

150 CALL IBCICU (SIG, ISD, RLBS, NRLBS, SMSZ, NSMSZ, LRLBS,
1 LSMSZ, C, WK, IER)

CALL IBCEVU (RLBS, NRLBS, SMSZ, NSMSZ, LRLBS, LSMSZ, C,
1 RCHAT(J), RNSAM, SIGMA, IER)

IF (SIGMA .GE. RCRLB) GO TO 180
160 SIGMA - RCRLB

IER - 0
GO TO 180

170 IF (RNSAM .EQ. SMSZ(LSMSZ + 1)) LSMSZ - LSMSZ + 1
SIGMA - SIG(I, LSMSZ)
IF (SIGMA .GE. RCRLB) GO TO 180
SIGMA - RCRLB

180 CONTINUE
C
C FORM A VECTOR OF NDEV SAMPLE RELIABILITIES WITH MEAN RCHAT
C AND A STANDARD DEVIATION OF SIGMA

NDEV - 2000
CALL GGNML (DSEED, NDEV, DEV)

DO 190 1 - 1, 2000
RC(I, J) - RCHAT(J) + DEV(I) * SIGMA

C TRUNCATE THE NORMAL DISTRIBUTION IF COMPONENT RELIABILITY

C IS GREATER THAN 1
IF (RC(I,J) .LE. 1.) GO TO 190

RC(I, J) - 1.
NTRUNC - NTRUNC + 1

190 CONTINUE

GO TO 290
C
C IF FAILS TO CONVERGE, START WITH ANOTHER KHAT AND TRY AGAIN

200 PRINT 449, NCOUNT, J, NSTART, KHAT, THAT, ITMAX, IER
NSTART - NSTART + 1
GO TO ( 210, 220, 230, 240, 250, 260, 270, 280), NSTART

210 START - 1.

51



GO TO 30

220 START - .5
GO TO 30

230 START - .9
GO TO 30

240 START - 4.5
GO TO 30

250 START - 1.1
GO TO 30

260 START - 1.5
GO TO 30

270 START - 3.5
GO TO 30

C IF MLES FAIL TO CONVERGE IN 8 ATTEMPTS, PRINT A
C MESSAGE AND GO ON TO THE NEXT COMPONENT

280 PRINT 459
C

290 CONTINUE
C *********************************************************************

C
C FOR EACH OF THE 4 SYSTEMS, THE DIFFERENT COMPONENTS ARE COMBINED
C TO YIELD NDEV SAMPLES OF THE SYSTEM RELIABILITY. THESE SAMPLES
C ARE SEQUENCED IN ASCENDING ORDER AND THEN COUNTERS KEEP TRACK
C OF WHEN THE 99, 95, 90, 80, 70, 60, AND 50 PERCENT CONFIDENCE
C INTERVALS CONTAIN THE TRUE SYSTEM RELIABILITY.
C
C SYSTEM 1

NMC m 1
IDIM - 1
CALL RELI (NMC, TRC, TRS, IDIM)
ATRS(I) - TRS(I)
NMC - 2000
IDIM = 2000
CALL RELI (NMC, RC, RS, IDIM)
CALL VSRTA (RS, IDIM)
IF (RS(20) .LE. TRS(1)) NSIC99 - NS1C99 + 1
IF (RS(100) .LE. TRS(1)) NSIC95 - NSIC95 + 1
IF (RS(200) .LE. TRS(1)) NSIC90 - NSlC90 + 1
IF (RS(400) .LE. TRS(1)) NSIC80 - NSIC80 + I
IF (RS(600) .LE. TRS(l)) NSIC70 - NSIC70 + 1
IF (RS(800) .LE. TRS(1)) NS1C60 - NSIC60 + 1
IF (RS(1000) .L. TRS(1)) NSlC50 - NSlC50 + 1

C
C SYSTEM 2

NMC ,1
IDIM -1
CALL REL2 (NMC, TRC, TRS, IDIM)

ATRS(2) - TRS(1)
NMC = 2000
IDIM - 2000
CALL REL2 (NMC, RC, RS, IDIM)
CALL VSRTA (RS, IDIM)
IF (RS(20) .LE. TRS(1)) NS2C99 - NS2C99 + I
IF (RS(100) .LE. TRS(1)) NS2C95 - NS2C95 + 1
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IF (RS(200) -LE. TRS(1)) NS2C9O - NS2C9O + I
IF (RS(400) -LE. TRS(1)) NS2C80 - NS2C8O + 1
IF (RS(600) -LE. TRS(1)) NS2C7O - NS2C7O + I
IF (RS(800) .LE. TRS(1)) NS2C6O - NS2C6O + 1
IF (RS(1000) .LE. TRS(1)) NS2C5O - NS2C5O + 1

C
C SYSTEM 3

NMC =-1
IDIM =1I
CALL REL3 (NMC, TRC, TRS, IDIM)
ATRS(3) - TRS(1)
NMC - 2000
IDIM - 2000
CALL REL3 (NMC, RC, RS, IDIM)
CALL VSRTA (RS, IDIM)
IF (RS(20) .LE. TRS(1)) NS3C99 -NS3C99 + 1
IF (RS(100) .LE. TRS(1)) NS3C95 - NS3C95 + 1
IF (RS(200) .LE. TRS(1)) NS3C9O - NS3C9O + 1.
IF (RS(400) .LE. TRS(1)) NS3C8O - NS3C8O + 1
IF (RS(600) .LE. TRS(1)) NS3C7O - NS3C7O + 1
IF (RS(800) .LE. TRS(1)) NS3C6O - NS3C6O + 1
IF (RS(1000) .LE. TRS(1)) NS3C5O -NS3C5O + I

C
C SYSTEM 4

NMC -
IDIM -
CALL REL4 (NMC, TRC, TRS, IDIM)
ATRS(4) - TRS(1)
NMC - 2000
IDIM - 2000
CALL REL4 (NMC, RC, RS, IDIM)
CALL VSRTA (RS, IDIM)
IF (RS(20) .LE. TRSC1)) NS4C99 =NS4C99 + 1
IF (RS(100) .LE. TRS(1)) NS4C95 - NS4C95 + 1
IF (RS(200) .LE. TRS(1)) NS4C9O - NS4C9O + 1
IF (RS(400) .LE. TRS (1) NS4C8O - NS4C8O + 1
IF (RS(600) .LE. TRS (1)) NS4C7O = NS4C7O + 1
IF (RS(8'00) .LE. TRS(1)) NS4C6O - NS4C6O + 1
IF CRS(1000) .LE. TRS(1)) NS4C5O = NS4C5O + 1

300 CONTINUE
C
C **********************************

C **********************************

C
NPT - 10000 * NOLMC
PRINT 469, NTRUNC, NPT
RNOLMC - NOLMC

C FOR SYSTEM 1, DETERMINE THE 99, 95, 90, 80, 70, 60, AND 50
C PERCENT CONFIDENCE LIMIT COVERAGE OF THE TRUE SYSTEM RELIABILITY

PS1C99 - NS1C99 /RNOLMC
PSIC95 - NS1C95 /RNOLMC
PS1C9O - N5lC90 /RI4OLMC
PSIC80 - NSIC80 RNOLMC
PSIC70 - NSlC70 RIN0LMC
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PSIC60 - NS1C60 /RN0MC
PS1C5O - NS1C50 / RNOLMC

C FOR SYSTEM 2, DETERMINE THE 99, 95, 90, 80, 70, 60, AND 50
C PERCENT CONFIDENCE LIMIT COVERAGE OF THE TRUE SYSTEM RELIABILITY

PS2C99 NS2C99 / RNOLMC
PS2C95 NS2C95 / RNOLMC
PS2C90 NS2C9O / RNOLMC
PS2C8O - NS2C8O / RNOLMC
PS2C7O - NS2C7O / RNOLMC
PS2C6O - NS2C6O / RNOLMC
PS2C5O - NS2C50 / RNOLMC

C FOR SYSTEM 3, DETERMINE THE 99, 95, 90, 80, 70, 60, AND 50
C PERCENT CONFIDENCE LIMIT COVERAGE OF THE TRUE SYSTEM RELIABILITY

PS3C99 - NS3C99 / RNOLMC
PS3C95 - NS3C95 / RNOLMC
PS3C90 - NS3C9O / RNOLMC
PS3C80 - NS3C80 / RNOLMC
PS3C7O - NS3C7O / RNOLMC
PS3C6O - NS3C6O / RNOLMC
PS3C50 - NS3C5O / RNOLMC

C FOR SYSTEM 4, DETERMINE THE 99, 95, 90, 80, 70, 60, AND 50
C PERCENT CONFIDENCE LIMIT COVERAGE OF THE TRUE SYSTEM RELIABILITY

PS4C99 - NS4C99 / RNOLMC
PS4C95 - NS4C95 / RNOLMC
PS4C9O - Ns4C90 / RNOLMC
PS4C80 - NS4C80 / RNOLMC
PS4C7O - NS4C70 / RNOLMC
PS4C60 - NS4C60 / RNOLMC
PS4C50 - NS4C50 / RNOLMC
PRINT 479
PRINT 489, ATRS (1), PSIC99, PS1C95, PSIC90, PS1C80, PSIC70,

1 PS1C60, PSlC5O
PRINT 499
PRINT 489, ATRS (2), PS2C99, PS2C95, PS2C90, PS2C80, PS2C70,

1 PS2C6O, PS2C50

PRINT 509
PRINT 489, ATRS (3), PS3C99, PS3C95, PS3C9O, PS3C8O, PS3C7O,

1 PS3C60, PS3C50

PRINT 519
PRINT 489, ATRS (4), PS4C99, PS4C95, PS4C90, PS4C80, PS4C70,

1 PS4C60, PS4C5O
C
C ********************************************************************
C ********************************************************************
c
C THIS PROGRAM SEGMENT RUNS A KOLMOGOROV-SMIRNOV TEST OF THE
C ASSUMPTION THAT THE COMPONENT RHATS ARE NORMALLY DISTRIBUTED
C

DO 360 J - 1, 5
Z - TRC(J)
RCRLB - SQRT(Z ** 2 * (ALOG(Z)) ** 2 * (1.109 - .514 *

I ALOG( - ALOG(Z)) + .608 * (ALOG( - ALOG(Z))) ** 2) / RNSAM)
DO 310 1 - 1, NSMSZ1

LSMSZ - I
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IF (RNSAM .LE. SMSZ(I+1)) GO TO 320
310 CONTINUE

GO TO 350
320 DO 330 I - 1, NRLBS1

LRLBS - I

IF (TRC(J) .LE. RLBS(I+1)) GO TO 340
330 CONTINUE

GO TO 350
340 CALL IBCICU (SIG, ISD, RLBS, NRLBS, SMSZ, NSMSZ, LRLBS, LSMSZ,

I C, WK, IER)
CALL IBCEVU (RLBS, NRLBS, SMSZ, NSMSZ, LRLBS, LSMSZ, C, TRC(J),

1 RNSAM, SIGMA, IER)
IF (SIGMA .GE. RCRLB) GO TO 360

350 SIGMA - RCRLB
IER - 0
PRINT *, "Z-", Z, " SIGMA-", SIGMA

360 RCHSIG(J) - SIGMA
PRINT 529, (TRC(J), J-1, 5)
PRINT 529, (RCHSIG(J), J-1, 5)
PRINT *, " "
ALPHA - .05
TALPHA - 1.36 / SQRT(RNOLMC)
IF (NOLMC .LE. 40) TALPHA - QNTKS (NOLMC)
CALL TNORKS (ARCHAT, NOLMC, TRC, RCHSIG, ALPHA, TALPHA)

C
C ********************************************************************

C ********************************************************************
C

STOP "FORAWHILE"
C

409 FORMAT ( IHi )
419 FORMAT C "

1 "**********", / , *", T62, "*", / , *", T62, "*",
2 , " *" T25, "SAMPLE " SIZE " , 13, T62, "*" / " *"
3 T62, "*", / , " *", T22, "MONTE CARLO " "SIZE - ", 13,
4 T62, "*" / " *" T62, "*", / , " *" T62, "*" /
5"6 "*", / / / / / / / )

429 FORMAT ( 5(1X, "COMPONENT ", II, / , 6X, "K , " F4.2, I
I 6X, "THETA - ", F5.0, / , 6X, "C - ", F2.0, / , 6X,
2 "RELIABILITY-", F7.5, / / ) )

439 FORMAT ( 15(0X, F7.5) )
449 FORMAT ( / , " **********", / , " MC-", 14, 4X, "J -", 12,

1 4X, "NSTART -", 12, / , " KHAT-" E13.6, 5X "THAT-" E13.6
2 " ITERATIONS-" 13, 5X "IER-" 13 / " * )

459 FORMAT ( / " ******************** / / " DID NOT CONVERGE IN"
1 " 8 ATTEMPTS WITH DIFFERENT STARTING KHATS" / " THEREFORE GO"
2 "ING ON TO THE NEXT COMPONENT" / / "

3)
469 FORMAT ( / / , " THERE WERE", 17, " HIGH TRUNCATIONS OUT OF"

1 , 18, " RELIABILITY DEVIATES", / / )
479 FORMAT ( / " ***** SYSTEM 1 *****" / " (3 COMPONENTS IN SERI"

1 "ES)" )
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Now - -

489 FORMAT ( / , " TRUE SYSTEM RELIABILITY -", F7.5, /
I " THE 99 PERCENT CONFIDENCE INTERVAL COVERED ", F6.4,
2 " OF THE RUNS", / , " THE 95 PERCENT CONFIDENCE INTERVAL COV"
3 "ERED ", F6.4 "OFTHERUNS", / , " THE 90 PERCENT CONFIDENCE I"
4 "NTERVAL COVERED " F6.4, " OF THE RUNS", / , " THE 80 PERCE"
5 "NT CONFIDENCE INTERVAL" " COVERED " F6.4 "OFTHERUNS", /
6 " THE 70 PERCENT CONFIDENCE " "INTERVAL COVERED ", F6.4,
7 " OF THE RUNS", / , " THE 60 PERCENT " "CONFIDENCE INTERVAL"

8 " COVERED ", F6.4, " OF THE RUNS", /, " THE", " 50 PERCEN"
9 "T CONFIDENCE INTERVAL COVERED ", F6.4, " OF THE RUNS", / /
9 / )

499 FORMAT ( / " ***** SYSTEM 2 *****" / " (1 COMPONENT IN SERIE"
1 "S WITH 2 " "IN PARALLEL)" )

509 FORMAT ( / " ***** SYSTEM 3 *****" I " (3 COMPONENTS IN PARA"
1 "LLEL)" )

519 FORMAT C / " ***** SYSTEM 4 *****" / " (A 5-COMPONENT COMPLE"
1 "X NETWORK)" )

529 FORMAT ( 5(IX, F10.8, 5X) )
C

END
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FUNCTION CMPREL (TIME, K, THETA, C)
REAL K
CMPREL -EXP( M (IME -C) /THETA) **K)

RETURN
END
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FUNCTION RLKLRD (R, RK, T, C)
DIMENSION R (205,5)
J - R(205, 1)
NSAM - R(204, J)

RLKLHD - 1.
DO 10 1 - 1, NSAM
X - RLKLHD

10 RLKLHD - X * RK *(R(I, J) -C) **(RK -1.) /T **RK*

1 EXP( -(((R(I, J) -C) IT) **RK))
RETURN
END
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FUNCTION F (X, K, R)
DIMENSION R (205,5), X (2)
REAL KHAT
J - R(205, 1)
NSAM - R(204, J)
KHAT - X(1)
THAT - X(2)
SUMXIK - 0.
SUMLXI - 0.
SUMFR - 0.
IF (THAT .LE. 0. .OR. KHAT .GT. 15.) RETURN

DO 10 1 -1, NSAM
SUMXIK - SUMXIK + R(I, J) ** KHAT

10 SUMLXI - SUMLXI + ALOG(R(I, J))
DO 20 1 - 1, NSAM

20 SUMFR - SUMFR + (R(I, J) / THAT) ** KHAT * ALOG(R(I, J) /
I THAT)
IF (K .EQ. 2) GO TO 30
F - THAT - (SUMXIK / NSAM) ** (1. / KHAT)
RETURN

30 F - NSAM / KHAT - NSAM * ALOG(THAT) + SUMLXI - SUMFR
RETURN
END
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SUBROUTINE RELl (NMC, R, RS, IDIM)

C RELl DETERMINES THE SYSTEM RELIABILITY OF 3 COMPONENTS IN SERIES

DIMENSION R (IDIM,5), RS (IDIM)
DO 10 - 1,NMC

10 RS(I) - R(I, 1) *R(I, 2) *R(I, 3)

RETURN
END
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SUBROUTINE REL2 (NMC, R, RS, IDIM)
C REL2 DETERMINES THE SYSTEM RELIABILITY OF 1 COMPONENT IN
C SERIES WITH 2 IN PARALLEL

DIMENSION R (IDIM,5), RS (IDIM)
DO 10 1 - 1, NMC

10 RS(I) - R(I, 1) *(1. -(1. -R(I, 2)) *(1. -R(I, 3)))
RETURN
END
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SUBROUTINE REL3 (NMC, R, RS, IDIM)
C REL3 DETERMINES THE SYSTEM RELIABILITY OF 3 COMPONENTS IN PARALLEL

DIMENSION R (IDIM,5), RS (IDIM)
DO 10 1 - 1, NMC

10 RS(I) - 1. (1C. -R(I, 1)) *(1. -R(I, 2)) *(1. -R(I,

1 3))
RETURN
END
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SUBROUTINE REL4 (NMC, R, RS, IDIM)
C REL4 DETERMINES THE SYSTEM RELIABILITY OF A 5 COMPONENT
C COMPLEX NETWORK

DIMENSION R (IDIM,5), RS (IDIM)
DO 10 I - 1, NMC
RS(I) - R(I, 1) * (1 - (1 - R(I, 2)) * (1 -R(I, 5) * (1 -

1 (1 - R(I, 3)) * (1 -R(I, 4)))))
10 CONTINUE

RETURN
END
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SUBROUTINE TNORKS (ARCHAT, NOLMC, TRC, RCHSIG, ALPHA, TALPHA)
DIMENSION ARCHAT (2000,5), CHMX (5), RCHSIG (5), TRC (5)
RNOLMC - NOLMC

C ORDER EACH COLUMN (A VECTOR CONTAINING THE COMPONENT RHATS)
C FROM THE SMALLEST RHAT TO THE LARGEST

DO 10 J - 1, 5
10 CALL VSRTA (ARCHAT(l, J), NOLMC)

C
C ********** FOR EACH COMPONENT **********

DO40J 1, 5

C
C FIND THE DEVIATIONS OF THE EMPERICAL DISTRIBUTION FROM THE
C CUMULATIVE PROBABILITY DISTRIBUTION OF THE NORMAL

AVRCH - 0.
DO 201 - 1, NOLMC

C AVRCH SUMS THE RHATS FOR EACH COMPONENT. LATER IT WILL BE
C DIVIDED BY THE MONTE CARLO SIZE TO GET AN AVERAGE RHAT.

AVRCH - AVRCH + ARCHAT(I, J)
SD - (ARCHAT(I, J) - TRC(J)) / RCHSIG(J)
CALL MDNOR (SD, X)
Z m I

CHLO - ABS((Z - 1.) / RNOUIC - X)
CHHI m ABS(Z / RNOLMC - X)
IF (I .EQ. 1) CHMX (J) = CHLO
IF (CHLO .GT. CHMX(J)) CHMX (J) - CHLO
IF (CHHI .GT. CHMX(J)) CHMX (J) - CHHI
PRINT *, J, I, ARCHAT (I, J), X, CHLO, CHHI

20 CONTINUE
C PRINT THE RESULTS OF THE K-S TEST OF NORMALITY

AVRCH - AVRCH / RNOLMC
BIAS - AVRCH - TRC(J)
ESD - 0.

DO 30 1 = 1, NOLMC
DIFF - ARCHAT(I, J) - AVRCH
ESD - ESD + DIFF * DIFF

30 CONTINUE
ESD - SQRT(ESD / (RNOLMC - 1.))
PRINT 109, J, TRC (J), RCHSIG (J), AVRCH, ESD, BIAS, CHMX (J),

1 TALPHA
IF (CHMX(J) .GT. TALPHA) PRINT 119,ALPHA
IF (CHX(J) .LE. TALPHA) PRINT 129,ALPHA

40 CONTINUE
C ****************************************

C
RETURN

C
C

109 FORMAT C / , IX, "K-S TEST OF NORMALITY FOR RHATS OF COMPONEN"
I "T ", II, / , 5X, "TRUE COMPONENT RELIABILITY -", F1O.8,
2 5X, "SIGMA i", F10.8, / , 5X, "AVERAGE RHAT -", F10.8,
3 5X, "EMPERICAL STANDARD DEVIATION -", F1O.8, / , 5X,
4 "BIAS -", F1O.8, / , 5X, "TEST STATISTIC "", F5.3, 8X,
5 "TALPHA -", F5.3 )

119 FORMAT ( 5X, "REJECT AT ALPHA i", F4.2 )
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129 FORMAT (5X, "FAIL TO REJECT AT ALPHA ",F4.2)

C
END
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